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Abstract

In this paper we present the exact solution of the Riemann problem for the non-linear shallow water equations with a
step-like bottom. The solution has been obtained by solving an enlarged system that includes an additional equation for
the bottom geometry and then using the principles of conservation of mass and momentum across the step. The resulting
solution is unique and satisfies the principle of dissipation of energy across the shock wave. We provide examples of pos-
sible wave patterns. Numerical solution of a first-order dissipative scheme as well as an implementation of our Riemann
solver in the second-order upwind method are compared with the proposed exact Riemann problem solution. A practical
implementation of the proposed exact Riemann solver in the framework of a second-order upwind TVD method is also
illustrated.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The shallow water equations represent a popular mathematical model for free-surface flows arising in
shores, rivers and many other physical situations [15]. Due to the non-linearity of the equations as well as
the complexity of the geometries encountered in real-life applications much effort has been made in recent
years to develop numerical methods to solve the equations approximately. In particular, Godunov-type meth-
ods [8] have proven popular due to their ability to treat discontinuities arising in the solution. For a review of
modern finite-volume methods as applied to the shallow water equations see [18], for example. However, in
spite of significant overall progress made in the field, serious problems still remain in dealing with geometric
source terms arising in the shallow water equations in the case of non-uniform bottom geometry. Conven-
tional techniques for treating the source terms produce erroneous results, and special effort is required to avoid
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numerical artifacts when the bottom distribution varies rapidly. Similar problems arise in other hyperbolic sys-
tems with geometric source terms.

A popular approach to the construction of Godunov-type methods for hyperbolic systems with geometric
source terms is to use the so-called upwind discretization of the source, first introduced by Roe in 1986 [14].
See also [7,12,19] and references therein. A particular variety of these schemes, the so called well-balanced
schemes, the source terms are approximated so as to ensure that in the steady-state the flux gradient and
the source terms are balanced, at least approximately. Another approach to the problem is to add an addi-
tional equation to the system describing the bottom behaviour in time and then try to construct a Riemann
solver for the extended system, see e.g. [6]. The idea is that the scheme using such a Riemann solver will not be
prone to the problems encountered in conventional advection methods. We also mention the so-called surface-
reconstruction method [10] for constructing well-balanced schemes, in which an appropriate choice of vari-
ables is chosen to reformulate the equations.

In this work, we present an exact solution of the Riemann problem for the shallow water equations with a
discontinuous bottom geometry. The method uses two main assumptions. Firstly, conservation of mass and
momentum are used to derive the Rankine–Hugoniot conditions across the bottom step. Secondly, in order to
exclude the multiplicity of solutions, we impose that the entropy condition be fulfilled; that is, total energy
dissipates across the stationary shock wave at the step and transition from subcritical to supercritical flow
across an upward step is excluded. We then show that the resulting self-similar solution is unique and can
be constructed in a conventional way by solving an algebraic system of two equations for the so-called star

values for depth and velocity.
To assess our new solution we present a number of numerical examples. First, we compare our exact solu-

tion with numerical solutions of a first-order centred scheme. Good agreement is observed. Next, we illustrate
a practical use of the developed exact Riemann solver by incorporating it into the Weighted Average Flux
(WAF) method [16,17,4,3], which is a second-order Godunov-type TVD scheme. A detailed evaluation of
the resulting scheme is the subject of current investigations by the authors, of which some encouraging pre-
liminary results are shown here.

There are currently in the literature some published works that are related to the present paper; see for
example [1,11,5]. In [5] the authors analyze the particular case of zero initial velocity on the side of the inter-
face with the lower depth and show that under the energy conservation condition the stated Riemann problem
is unsolvable. To overcome this they consider two different options. In the first option an heuristic parameter
is introduced that defines the part of the total flow energy that is lost in the transition over the drop. In the
second option the continuity of the flow rate is imposed over the drop. This option is similar to ours.

The rest of the paper is organized as follows. In Section 2 we analyze the structure of the system of equa-
tions of interest. In Section 3 the solution of the Riemann problem with a discontinuous piece-wise constant
bottom geometry is presented. Examples of possible solution patterns are given in Section 4 for a number of
wave patterns. Comparison of the exact solution and the numerical solution of a first-order dissipative scheme
as well as an implementation of our Riemann solver in the second-order upwind method are shown in Section
5. Conclusions are drawn in Section 6.

2. Shallow water equations with a source term

We consider the augmented one-dimensional system of shallow water equations (SWE) with a discontinu-
ous bottom in the following form:
o

ot
/þ o

ox
ð/uÞ ¼ 0

o

ot
ð/uÞ þ o

ox
ð/u2 þ 1

2
/2Þ ¼ g/

o

ox
h

o

ot
ð/vÞ þ o

ox
ð/uvÞ ¼ 0

o

ot
h ¼ 0

ð1Þ
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Here g is the free-surface elevation, h is the bottom depth with respect to the z plane, u and v are the compo-
nents of velocity in x and y directions respectively, g is the acceleration due to gravity, d ¼ hþ g is the total
depth, c ¼

ffiffiffiffiffiffi
gd
p

is the celerity and / ¼ c2. See Fig. 1 for a graphical explanation of the variables. An addi-
tional, fourth equation for the bottom has been added to the system of equations in a manner similar to that
used in [11] for the equations of gas dynamics. In this section we first study the eigenstructure of the resulting
modified system of equations and derive Rankine–Hugoniot conditions by applying the laws of mass and
momentum conservation to a finite mass of fluid across the bottom discontinuity.

2.1. Eigenvalues and eigenvectors for the modified SWE

To carry out the eigenstructure analysis we rewrite (1) in quasilinear following form:
o

ot
U þ A

o

ox
U ¼ 0
where the vector of conservative variables U and the matrix A are given by:
U ¼

/

/u

/v

h

2
6664

3
7775 ¼

u1

u2

u3

u4

2
6664

3
7775; A ¼

0 1 0 0

�ðu2=u1Þ2 þ u1 2u2=u1 0 gu1

�u2u3=u2
1 u3=u1 u2=u1 0

0 0 0 0

2
6664

3
7775
The matrix A has the following four real eigenvalues:
k1 ¼ u�
ffiffiffiffi
/

p
; k2 ¼ 0; k3 ¼ u; k4 ¼ uþ

ffiffiffiffi
/

p

The set of corresponding left eigenvectors is given by:
L ¼

l1

l2

l3

l4

0
BBB@

1
CCCA ¼

ðu3
1 � u2

2Þ=u2
1 ðu1u2 � u5=2

1 Þ=u2
1 0 gu1

0 0 0 1

�u2=u1 0 1 0

ðu3
1 � u2

2Þ=u2
1 ðu1u2 þ u5=2

1 Þ=u2
1 0 gu1

0
BBBB@

1
CCCCA
A standard procedure shows that the second and third eigenvectors correspond to the following Riemann
invariants:
h ¼ const; v ¼ const
x

z

h

η

bottom

y
shore line

free surface

Fig. 1. Reference frame and physical variable.
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The equations along characteristics for the first and fourth eigenvectors are similar and we therefore analyze
only the first one. For the first characteristic curve we have:
ðu3=2
1 þ u2Þ

u2
1

du1 þ
du2

u1

þ gu1ðu
3=2
1 � u2Þ�1dh ¼ 0 ð2Þ
As one may expect, the equation for the Riemann invariant depends on the bottom variation. For the rest of
the paper we assume that hðxÞ is a piecewise constant function. Therefore, where hðxÞ is continuous (away
from the discontinuity) we have dh ¼ 0, and the corresponding first Riemann invariant coincides with the con-
ventional one and is given by:
u� 2
ffiffiffiffi
/

p
¼ const ð3Þ
Similarly, the fourth invariant is given by:
uþ 2
ffiffiffiffi
/

p
¼ const ð4Þ
Therefore, we have established that if the bottom variation is piecewise constant then the characteristic lines
and Riemann invariants of (1) in the regions where hðxÞ is constant coincide with those of the conventional
shallow water equations without the geometric source term. The same conclusion was drawn in [11] for a sys-
tem of gas dynamical equations with a source term.

2.2. Rankine–Hugoniot condition for a discontinuous bottom

Assume that the initial left and right states are connected by a single discontinuity. We consider a flow
region made up of water lying between two vertical planes pL and pR, as depicted in Fig. 2. Let us again denote
the quantities on the left side of the discontinuity by the index L and those on the right by R. That is U L is the
left state vector and UR is the right one. Without loss of generality we assume that hL > hR, in fact, due to the
symmetry property of the flow, the solution for the case hL < hR can be obtained exchanging the L and R sub-
cripts. Referring to Fig. 2 xLðtÞ, xRðtÞ and sðtÞ are respectively the position of the plane pL, of the plane pR and
of the position of the discontinuity of the water surface at time t.

For the following mathematical development we assume, as common in Shallow Water Theory, the follow-
ing [15]:
Fig. 2. Sketch of the Rankine–Hugoniot conditions.



3216 R. Bernetti et al. / Journal of Computational Physics 227 (2008) 3212–3243
Definition 2.1. Particles in a vertical plane at any instant always remain in a vertical plane, i.e. the streamwise
velocity is uniform over the vertical.

Definition 2.2. The planes pL and pR are chosen such that they always contain the same particles hence the
integration volume are moving with the fluid.

With the previous assumptions we have chosen a material reference frame to describe the motion of the
fluid. Application of the conservation principles in this frame reduce to the condition that the material deriv-
ative of the mass be equal to zero while that of x-component of the first-order momentum be equal to the sum
of surface and volume forces acting on the fluid volume [15]:
d

dt

Z xRðtÞ

xLðtÞ

Z g

�h
qdzdx ¼ 0

d

dt

Z xRðtÞ

xLðtÞ

Z g

�h
qudzdx ¼

Z gðxLÞ

�hðxLÞ
p dzþ

Z xRðtÞ

xLðtÞ
pnx dx�

Z gðxRÞ

�hðxRÞ
p dz
where q is the fluid density, p is the pressure and nx is the component of the normal to the bottom surface in the
x direction. The previous equation continue to be valid if the shock velocity is _s ¼ 0. We now make the
assumption of hydrostatic pressure distribution, that is
pðx; zÞ ¼ qgðgðxÞ � zÞ
After integration in the z-direction the above system can be rewritten as:
d

dt

Z xRðtÞ

xLðtÞ
qðgðxÞ þ hðxÞÞdx ¼ 0

d

dt

Z xRðtÞ

xLðtÞ
qðgðxÞ þ hðxÞÞu dx ¼ þ 1

2
qgðgðxLÞ þ hðxLÞÞ2 þ

Z xRðtÞ

xLðtÞ
pnx dx� 1

2
qgðgðxRÞ þ hðxRÞÞ2

ð5Þ
The integrals in dx are in the form:
I ¼
Z xRðtÞ

xLðtÞ
Wðx; tÞdx ð6Þ
where Wðx; tÞ is discontinuous at x ¼ sðtÞ, this results in:
I ¼
Z sðtÞ

xLðtÞ
Wðx; tÞdxþ

Z xRðtÞ

sðtÞ
Wðx; tÞdx ð7Þ
Differentiation under the integral sign gets:
dI
dt
¼
Z sðtÞ

xLðtÞ

dWðx; tÞ
dt

dxþ
Z xRðtÞ

sðtÞ

dWðx; tÞ
dt

dxþWðs�; tÞ_sðtÞ �WðxLðtÞ; tÞuL �Wðsþ; tÞ_sðtÞ þWðxRðtÞ; tÞuR

ð8Þ
where uL and uR are respectively the velocity of left and right fluid plane, Wðs�; tÞ and Wðsþ; tÞ the limit values
of Wðx; tÞ to the left and to the right of the shock at s.

Dealing with discontinuous bottom we have to consider a more general configuration as in Fig. 3. In this
case the bottom pressure action can be analyzed as follows:
Z xR

xL

pnx dx ¼
Z sðtÞ

xLðtÞ
pnx dxþ

Z xRðtÞ

sðtÞ
pnx dx�

Z �hðsþÞ

�hðs�Þ
p dz ð9Þ



Fig. 3. Action exerted by the fluid on the step surface.
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Now we have to consider the limit case when xL ! s and xR ! s which leads for mass and momentum inte-
grals to:
lim
xL!s

Z sðtÞ

xLðtÞ

dWðx; tÞ
dt

dx ¼ 0

lim
xR!s

Z xRðtÞ

sðtÞ

dWðx; tÞ
dt

dx ¼ 0

ð10Þ
and for the pressure:
lim
xL!s

Z sðtÞ

xLðtÞ
pnx dx ¼ 0

lim
xR!s

Z xRðtÞ

sðtÞ
pnx dx ¼ 0

ð11Þ
Using results of Eqs. (8)–(11) into (5) and defining d ¼ hþ g:
ðqdL � qdRÞ_s� qdL � uL þ qdR � uR ¼ 0

ðqdLuL � qdRuRÞ_s� qdL � u2
L þ qdR � u2

R ¼ þ
1

2
qgd2

L �
1

2
qgd2

R �
1

2
qg½dL þ ðgL þ hRÞ�ðhL � hRÞ

ð12Þ
Defining ‘‘½ �” as the jump across the discontinuity, e.g. ½qd� ¼ qdR � qdL, etc., we obtain the following
relations:
� _s½qd� þ ½qdu� ¼ 0

� _s½qdu� þ ½qdu2� ¼ �½1
2

qgd2� þ H
ð13Þ
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The term H is responsible for the bottom variation and represents the force exerted by the fluid on the step
surface (with minus sign), see Fig. 3:
H ¼ � 1

2
qg½dL þ ðgL þ hRÞ�ðhL � hRÞ ð14Þ
Simple manipulations of (13) and H yield the following:
�_s½/� þ ½/u� ¼ 0

�_s½/u� þ ½/u2� ¼ � 1
2
/2

� �
� 1

2
ð/2

L � /2
s Þ

�
ð15Þ
where according to the previous assumptions hL > hR, the quantity /s is defined as
/s ¼ /L � gðhL � hRÞ ð16Þ
2.2.1. Rankine–Hugoniot condition for _s ¼ 0

We are now in the position to write the conditions which must be satisfied across the characteristics, defined
by the eigenvalue k2, along which the bottom remains constant. The complete Rankine–Hugoniot conditions
for (1) are obtained from (15):
� _s½/� þ ½/u� ¼ 0

� _s½/u� þ ½/u2� ¼ � 1

2
/2

� �
þ 1

2
ð/2

L � /2
s Þ

� _s½/v� þ ½/uv� ¼ 0

� _s½h� ¼ 0
where again ½h� ¼ hR � hL. The last equation implies that two situations are possible [11]: (a) the bottom func-
tion hðxÞ remains constant across the shock, or (b) the bottom function hðxÞ is discontinuous but the shock
velocity vanishes. Case (b) applies when bottom discontinuities are present and the Rankine–Hugoniot con-
ditions reduce to the following system:
þ ½/u� ¼ 0

þ ½/u2� ¼ �½1
2
/2� � 1

2
ð/2

L � /2
s Þ

þ ½/uv� ¼ 0
Using previous definitions the system can be expressed in terms of the left and right conditions. When hL > hR

we have:
� /LuL þ /RuR ¼ 0

� /Lu2
L þ /Ru2

R ¼
1

2
ð/L � gðhL � hRÞÞ2 �

1

2
/2

R

� /LuLvL þ /RuRvR ¼ 0

ð17Þ
The situation is illustrated in Fig. 4. Eq. (17) represent the relation between the left and right states across a
bottom discontinuity of the form of a step. That is, conditions (17) state that the left and right mass of water
satisfy the conservation laws of mass and momentum flux across the bottom step. The uneven bottom acts as a
cross-sectional variation in a pipe duct, where the pressure is constant across the changed section but the fluid
equilibrium is achieved by the reaction of the solid wall of the pipe. This shows the particular nature of the
fluid which can transmit the pressure unchanged by the modification of the mass flux [13].

We now use (17) to deduce the velocity before and after the step as a function of the total depth. First, we
remark that due to the definition of /L and /R, which are always positive quantities, the following lemmas hold:

Lemma 2.1. The velocity uL and uR have the same sign.

The proof is trivial and is thus omitted.



Fig. 4. Volume of fluid crossing the bottom change.
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Now following the method used in [17] we define:
/LuL ¼ /RuR ¼ M
In the one-dimensional space used M is the volume rate passing through the stationary shock by the gravity
acceleration g. Now the second equation of (17) can be manipulated so as to obtain
M ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L/R

/L � /R

ðð/L � gðhL � hrÞÞ2 � /2
RÞ

s
ð18Þ
Using the previous relation for M we can obtain the following expression for the velocities:
uL ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/R

/L

ð/L � gðhL � hRÞÞ2 � /2
R

/L � /R

s
ð19Þ

uR ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L

/R

ð/L � gðhL � hRÞÞ2 � /2
R

/L � /R

s
ð20Þ
Let us define the non-dimensional quantities:
e ¼ /R

/L

; l ¼ M

/3=2
L

; Dh ¼ gðhL � hRÞ
/L
Then the relation between the non-dimensional volume flux l and the non-dimensional total depth e becomes:
l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
e
ð1� DhÞ2 � e2

1� e

s

We now introduce the Froude numbers of the left and right states of the stationary shock as follows:
F L ¼
uLffiffiffiffiffiffi
/L

p ; F R ¼
uRffiffiffiffiffiffi
/R

p

which can be connected to the non-dimensional mass flux l as follows:
F L ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
e
ð1� DhÞ2 � e2

1� e

s
; F R ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2e2

ð1� DhÞ2 � e2

1� e

s
ð21Þ
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The quantities (21) exist when the expressions under the square root signs are greater than or equal zero
F

ð1� DhÞ2 � e2

1� e
P 0
The solution of the previous inequality leads to the following conditions:
ð1� DhÞP e

1 P e

�
or

ð1� DhÞ 6 e

1 6 e

�
ð22Þ
Recall that Dh P 0. Also we must have /L P gðhL � hRÞ, otherwise the total depth on the left side is lower
than the step height and thus water cannot cross the step. Therefore, the inequalities reduce to two conditions
which represent the domain of existence of Eq. (21):
ð1� DhÞP e and 1 6 e
In dimensional form the above inequalities read:
/L � gðhL � hRÞP /R; /L P /R

or

/L 6 /R

ð23Þ
The resulting graph of the two functions is shown in Fig. 5.

Lemma 2.2. F L has two stationary points.

Proof. The stationary points of F L are the roots of the following polynomial
P 3
1ðeÞ ¼ 2e3 � 3e2 þ ð1� DhÞ2 ð24Þ
To find approximate values for the roots we use the perturbation technique of [2], which gives two meaningful
positive roots in the form of a series expansion. The roots are:
esta;1 ¼ 1�
ffiffiffi
2

3

r
Dh1=2 � 2

9
Dhþ 7

54
ffiffiffi
6
p Dh3=2 � 5

243
Dh2 þOðDh5=2Þ ð25Þ

esta;2 ¼ 1þ
ffiffiffi
2

3

r
Dh1=2 � 2

9
Dh� 7

54
ffiffiffi
6
p Dh3=2 � 5

243
Dh2 þOðDh5=2Þ � ð26Þ
Lemma 2.3. The stationary points of F L coincide with the points at which the function F R is equal to 1.

The proof is immediate and is thus omitted.
0.2 0.6 1 1.4 1.8
ε

0

1

2

3

4

5

F

FL

FL

FR

FR

ig. 5. Graphs of the Froude number for the left (solid line) and right (dashed line) states of the step for the case Dh ¼ 0:2.
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Lemma 2.4. The left and right state variable vectors U L and U R cannot be identical except for an infinite value of

the velocity.

The proof is obvious and is thus omitted. In fact, it is obvious from Fig. 5 that the two curves correspond-
ing to F L and F R values intersect only at e ¼ 1 with F !1.

2.2.2. Energy considerations for the Rankine–Hugoniot conditions

In general, in addition to the system of Eq. (13) the condition that the energy of the fluid particles does not
increase across the discontinuity must be satisfied. To apply this condition we again consider a fluid lying
between two vertical planes. The total energy of water is given by:
T ¼
Z xR

xL

E dxþ W
where E is the column energy and W ðxÞ is the work of the external force
E ¼ 1

2
qðgþ hÞu2 þ 1

2
qgðg2 � h2Þ; W ¼

Z g

�h
pðxLÞuðxLÞdt dz�

Z g

�h
pðxRÞuðxRÞdt dz
We note that our expression for E differs from the usual expression given in [15] due to the different potential
energy associated to columns of water at different bottom depths.

For the energy conservation theorem the following condition has to be satisfied together with Eq. (13):
d

dt
T 6 0 ð27Þ
where
d

dt
T ¼ d

dt

Z xR

xL

E dxþ
Z g

�h
pðxLÞuðxLÞdz�

Z g

�h
pðxRÞuðxRÞdz
If we now consider a stationary shock condition, _s ¼ 0, condition (27) should be satisfied together with (17).
This would allow us to determine physically admissible states characterized by the ratio e. In other words, we
can rule out some possible solutions which are allowed by inequalities (23).

Without loss of generality we can set hR ¼ 0. After some algebraic manipulations we arrive at the following
equation
g
q

d

dt
T ¼ 1

2
MðuR � uLÞðuR þ uLÞ �

1

2
/Lð/L � 2ghLÞuL þ /2

RuR �
1

2
/2

LuL
Using the second equation of (17) and the definition of M the time derivative of the total energy can be written
as
d

dt
T ¼ M

4

ðð/L � ghLÞ
2 � /2

RÞð/L þ /RÞ
/L/R

� 2ð/L � 2ghLÞ þ 4/R � 2/L

 !
ð28Þ
Lemma 2.5. The interval where d
dt T 6 0 holds depends on the sign of the flux M.

Proof. The right-hand side of (28) can be written in the following non-dimensional form:
l
4e
ð�e3 þ 3e2 þ ð�3þ 2Dhþ Dh2Þeþ 1� 2Dhþ Dh2Þ ð29Þ
It is obvious that the sign of l=4e is defined by that of l and is proportional to M. Therefore, the sign of the
non-dimensional expression for the total energy is related to the sign of the following third-order polynomial:
P 3ðeÞ ¼ �e3 þ 3e2 þ ð�3þ 2Dhþ Dh2Þeþ 1� 2Dhþ Dh2
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In order to study the sign of the polynomial we first find its roots by doing a perturbation analysis in the neigh-
borhood of Dh ¼ 0. This case is a singular case for P 3ðeÞ, where the polynomial has one threefold root e ¼ 1.
We again search for roots as a series expansion with respect to

ffiffiffi
h
p

and obtain the following expressions for the
roots as a function of Dh:
e1 ¼ 1�
ffiffiffi
2
p

Dh1=2 þ Dh
2
�

ffiffiffi
2
p

16
Dh3=2 þ

ffiffiffi
2
p

512
Dh2 þ

ffiffiffi
2
p

8192
Dh3 þOðDh7=2Þ ð30Þ

e2 ¼ 1� Dh ð31Þ

e3 ¼ 1þ
ffiffiffi
2
p

Dh1=2 þ Dh
2
þ

ffiffiffi
2
p

16
Dh3=2 �

ffiffiffi
2
p

512
Dh2 þ

ffiffiffi
2
p

8192
Dh3 þOðDh7=2Þ ð32Þ
It is worth noting that the second root is equal to the left boundary of the non-existence region of the velocity
as given by (22). Looking at the sign of the polynomial P 3ðeÞ in Fig. 6 we can now determine the regions where
the energy dissipates. The admissible regions of e depend on the sign of the non-dimensional volume flux l and
are the following:
l > 0 : e1 < e < e2 and e3 < e

and

l < 0 : 0 < e < e1 and 1 < e < e3 �
2.3. Gas dynamics analogy

The analogy between the equations of isentropic gas dynamics and the shallow water equations was noticed
in [15] for the flat bottom case and one space dimension. It is of interest to see if such an analogy can be
extended to the present system with a source term. The isentropic equations of gas dynamics in one space
dimension can be written as follows:
o�q
ot
þ oð�quÞ

ox
¼ 0

oð�quÞ
ot
þ o

ox
ð�qu2 þ pð�qÞÞ ¼ 0

ð33Þ
where the pressure p is connected to the density by the relation:
p ¼ k�qc
0.2 0.6 1 1.4 1.8
ε
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3 (
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Fig. 6. Graph of the polynomial P 3ðeÞ.
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The shallow water equations in one spatial dimension read:
o

ot
ðgdÞ þ o

ox
ðgduÞ ¼ 0

o

ot
ðgduÞ þ o

ox
ðgdu2 þ 1

2
ðgdÞ2Þ ¼ 0

ð34Þ
We now define the following quantities
�q ¼ d; p ¼ kdc; k ¼ 1

2
; c ¼ 2
With the above notation, systems (34) and (33) are identical.
When the cross-sectional area of the gas tube is not constant, a source term appears and (33) is modified as

follows:
oða�qÞ
ot
þ oða�quÞ

ox
¼ 0

oða�quÞ
ot

þ o

ox
ða�qu2 þ apð�qÞÞ ¼ pð�qÞ oa

ox
oa
ot
¼ 0

ð35Þ
where aðxÞ is the cross-sectional area and
pð�qÞ ¼ k
c

c� 1
�qc�1
The one-dimensional shallow water equations with variable bottom read:
o

ot
ðgdÞ þ o

ox
ðgduÞ ¼ 0

o

ot
ðgduÞ þ o

ox
ðgdu2 þ 1

2
ðgdÞ2Þ ¼ gðgdÞ oh

ox
oh
ot
¼ 0

ð36Þ
It is clear that due to the difference in the momentum conservation equation no analogy exists between (35)
and (36). One may argue that when a piecewise constant bottom and a piecewise constant cross-sectional area
are used then analogy can be restated. In fact as previously discussed at the end of Section 2.1 and in [11]
(where aðxÞ and hðxÞ are piecewise constant), systems (35) and (36) are identical to (33) and (34), respectively.
The differences arise in the discontinuity points for the bottom and for the cross-sectional area. In fact, fol-
lowing the discussion in [11], the Rankine–Hugoniot conditions, associated with the last equation of systems
(35) and (36), takes the following form:
k½a� ¼ 0
When the cross-sectional area/bottom is discontinuous the associated eigenvalue must be zero, k ¼ 0, and
following [11] we can rewrite (35) in conservative form and obtain the following Rankine Hugoniot conditions
at the step:
½a�qu� ¼ 0

u2

2
þ p0ð�qÞ

� �
¼ 0

ð37Þ
In the case of the shallow water equations no conservative form is available and the Rankine–Hugoniot con-
ditions for the first two equations are given by:
½gdu� ¼ 0

gdu2 þ 1

2
ðgdÞ2

� �
¼ þH

ð38Þ
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It is obvious that the conditions expressed by (37) and (38) are different.

3. Solution of the Riemann problem with a bottom step

In this section we construct the solution of the Riemann problem for (1) with piecewise constant initial data
represented by UL, U R. The solution of the Riemann problem, as depicted in Fig. 7, is represented by various
regions of constant values of u and / separated by shock waves or rarefaction waves (see Fig. 8). In the present
case, four different states are possible: ULðuL;/LÞ, URðuR;/RÞ – left and right initial data, UL�ðuL�;/L�Þ – the
transition state between the 1-wave curve and the state to the left of the stationary wave (the step),
UR�ðuR�;/R�Þ – the transition state between the state to the right of the stationary wave (the step) and the
3-wave curve.

An n-Wave is a shock or rarefaction wave in which the left and right states are connected by relations using
the n-th eigenvalue and associated eigenvector of the hyperbolic Eq. (1). Such relations are the Rankine–
Hugoniot conditions derived in Section 2.1 and the standard wave relations for the conventional shallow
water equations [17]. We now consider the phase plane (u� /). In the plane each point U with coordinates
ðu;/Þ represents the dynamic state of a vertical column of flow. If the velocity u on the right of an n-Wave
Fig. 7. Initial condition for the local RP.

Fig. 8. wave patterns of the RP.
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(either shock or rarefaction) is expressed as a function of the value of /L� on the same side and of the state on
the left of the wave, then considering a 1-wave, the function uL�ðU L;/L�Þ determines a curve on the phase
plane. Each point on the curve represents the right state of the corresponding 1-Wave while U L is the left state.
The end points of the piecewise curve described connecting patches of the three curves (obtained by the three
n-Wave families) represent the initial condition and the intersecting points, the transition states. In the follow-
ing three subsections the possible interaction between the three different types of existing waves are analyzed
and then, on this basis, the solution of the Riemann problem is constructed.

3.1. 1-Wave family curve

As seen in Section 2.1 the 1-Wave family curve corresponds to the 1-Wave family of the conventional shal-
low water equations without the fourth equation for a source term included. For given initial data of the left
state and assuming that the total depth of the right state is known, the velocity of the right state of the wave is
completely determined and is given by [17]:
uL�ðU L;/L�Þ ¼ x1ðU L;/L�Þ ¼
uL � 2

ffiffiffiffiffiffiffiffi
/L�

p
�

ffiffiffiffiffiffi
/L

p� 	
; /L� 6 /L

uL � ð/L� � /LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð/L�þ/LÞ
2/L��/L

q
; /L� P /L

8<
: ð39Þ
Here UL is the variable vector of the left state whereas uL� and /L� are the velocity and the square of the right
celerity of the right state. Eq. (39) can be used for a graphical representation of the function x1 (the ordinate of
the point ð/; uÞ) in the phase plane.

Lemma 3.1. x1ðUL;/L�Þ is a non-increasing function of /L�

The proof is omitted.

3.2. 2-Wave family curve

The 2-Wave family curve called x2 is drawn, in the phase plane, by the point ðu;/Þ whose coordinates u and
/ are the quantities at the right state of the stationary shock. For a given left state ðu0;/0Þ of the stationary
shock, the velocity u at the right is expressed by:
uR�ðUL�;/R�Þ ¼ x2ðUL�;/R�Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

ð/L� � gðhL � hRÞÞ2 � /2
R�

/L� � /R�

s
ð40Þ
Lemma 3.2. The function x2ðU L�;/R�Þ is always decreasing for the positive branch and always increasing for

negative branch in /R�.

The proof is omitted.
On the other hand, if the 2-Wave is crossed from right to left, then the velocity of the left state is given by (19):
uL� ¼ x2ð/L�;/R�Þ
 






¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/R�
/L�

ð/L� � gðhL � hRÞÞ2 � /2
R�

/L� � /R�

s
ð41Þ
From Section 2.2.1 the admissible values of /, for both Eqs. (39) and( 40) are given by the following
inequalities:
0 < /R� 6 /L� � gðhL � hRÞ /L� < /R�
We now study possible connections between the 1-Wave and 2-Wave family curves.

Definition. A point ðuR�;/R�Þ is the conjugate of ðuL�;/L�Þ if their coordinates are connected by (17)

Definition. Two curves x2ð/L�;/R�Þ and x1ðU L;/L�Þ are conjugate if all points ðuR�;/R�Þ of x2 are conjugate,
one to one, to the points ðuL�;/L�Þ of x1ðUL;/L�Þ.
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Lemma 3.3. If two curves x1 and x2 are conjugate then the following condition holds:
R1;2ðUL;U L�;/R�Þ ¼ x2ð/L�;/R�Þ
 






�x1ðUL;/L�Þ ¼ 0 ð42Þ
Proof. If x2 is the conjugate of x1 then the point ðx1ðUL;/L�Þ;/L�Þ represents the left state of a stationary
shock and x1ðUL;/L�Þ is the velocity on the left of the stationary shock. The left velocity is also given by
(41). h

Lemma 3.4. There exist two values of /R� for which R1;2ðU L;UL�;/R�Þ ¼ 0.

Proof. In the range 0 < /R� 6 /L� � gðhL � hRÞ we have:
R1;2ðU L;UL�; 0Þ ¼ �x1ðUL;/L�Þ
R1;2ðU L;UL�;/L� � gðhL � hRÞÞ ¼ �x1ðU L;/L�Þ
The function R is continuous and is not identically constant. Therefore, the lemma is proven if we can show that
the function has a stationary point inside the interval 0 < /R� 6 /L� � gðhL � hRÞ. Using the result of Lemma

2.2 the point /R� ¼ esta;1 /L� is a stationary point for x2ð/L�;/R�Þ
 






inside the interval 0 < /R� 6 /L� �
gðhL � hRÞ. On the other hand, in the interval /L� < /R� we have
R1;2ðUL;U L�;/L�Þ ! þ1; R1;2ðU L;U L�;1Þ ! þ1

Using the result of Lemma 2.2 the point /R� ¼ esta;2 /L� is a stationary point for x2ð/L�;/R�Þ

 





for /L� < /R�.

h

Lemma 3.4 shows that for each x2 curve there can be two possible conjugate curves x1. That is, for each
right state on the step there are two possible left states UL. Similar non-uniqueness has been observed for other
hyperbolic problems by other authors [11,9]. We now use Lemmas 2.1 and 2.5 to reduce non-uniqueness to a
more narrow range.

Lemma 3.5. In order to satisfy the energy dissipation condition the curve x2 has to be split into positive and

negative branches as follows
x2ðU L�;/R�Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

ð/L� � gðhL � hRÞÞ2 � /2
R�

/L� � /R�

s
; 0 <

/R�
/L�

< e1

x2ðU L�;/R�Þ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

/L� � gðhL � hRÞð Þ2 � /2
R�

/L� � /R�

s
; e1 <

/R�
/L�

< e2

x2ðU L�;/R�Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

/L� � gðhL � hRÞð Þ2 � /2
R�

/L� � /R�

s
; 1 <

/R�
/L�

< e3

x2ðU L�;/R�Þ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

ð/L� � gðhL � hRÞÞ2 � /2
R�

/L� � /R�

s
; e3 <

/R�
/L�
The proof is trivial and is based on Lemmas 2.1 and 2.5.

Fig. 9 shows plots of the non-dimensional curves x2ðU L�;/R�Þ and x2ð/L�;/R�Þ
 






, denoted by F R� and F L�,
respectively. As is seen from the plot, the solution is still non-unique in the two regions: e1 < e < 1� Dh, due
to the presence of esta;1, and in 1 < e < e3, due to the presence of esta;2. It is worth noting that when /R� moves
inside these intervals the value of F R� crosses the F ¼ 1 line (see Fig. 9), which corresponds to moving from a
supercritical state to a subcritical one (or vice versa). In fact, from F ¼ 1 (where F is the Froude number of the
right state of the stationary shock) follows that u ¼

ffiffiffiffi
/
p

. If we define, in the phase plane, the critical state curve
C by the equation:
u ¼ �
ffiffiffiffi
/

p
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Fig. 9. Plots of the left and right Froude numbers at the step.
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then we can see that for the values of / in the above intervals of non-uniqueness the corresponding 2-Wave
family curve x2ðU L�;/Þ crosses the critical state curve C, changing the right state of the wave from a subcrit-
ical one to a supercritical one (or vice versa). If we define
F max ¼ F Lðesta;1Þ; F min ¼ F Lðesta;2Þ

and Cmax and Cmin are the curves corresponding to the equations
u0 ¼ �F max

ffiffiffiffiffiffiffiffi
/L�

p
; u0 ¼ �F min

ffiffiffiffiffiffiffiffi
/L�

p

respectively, we can draw the following conclusion from the analysis of Fig. 9: no values of F are allowed in
the region jF maxj < jF j < jF minj and therefore the representative point ðuL�;/L�Þ of the left state cannot be in-
side the two regions defined by curves Cmax and Cmin. Thus, the critical state curve is internal to the domain
bounded by Cmax and Cmin.

As a result of the previous observations and Lemma 2.3 we can say that the crossing of the unity value by
F R� corresponds to the change of sign for the derivative of F L�. The non-uniqueness can be avoided if we

require that the curve x2ð/L�;/R�Þ
 






be always decreasing in the positive branch and increasing in the negative
one. This approach can be compared to the monotonicity criterion presented by [11]. There, the monotonicity
criterion is equivalent to requiring that no stationary shock crosses the boundary of hyperbolicity, which cor-
responds here to the critical state curve. The mathematical meaning of crossing is that the system of equations
(1) is no longer hyperbolic when the representative point ðu;/Þ of the curve x2ðU L�;/R�Þ is on the critical state
curve. We now modify the definition of curve x2ðUL�;/R�Þ in Lemma 3.5 as follows:
x2ðU L�;/R�Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

ð/L� � gðhL � hRÞÞ2 � /2
R�

/L� � /R�

s
; 0 <

/R�
/L�

< e1

x2ðU L�;/R�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

ð/L� � gðhL � hRÞÞ2 � /2
R�

/L� � /R�

s
; esta;1 <

/R�
/L�

< e2

x2ðU L�;/R�Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

ð/L� � gðhL � hRÞÞ2 � /2
R�

/L� � /

s
; 1 <

/R�
/L�

< esta;2

x2ðU L�;/R�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

/L�
/R�

ð/L� � gðhL � hRÞÞ2 � /2
R�

/L� � /R�

s
; e3 <

/R�
/L�

ð43Þ
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Now it is possible to look for the solution of (42) in connection with the left conditions of the Riemann prob-
lem. To this end we introduce the following non-dimensional quantities:
cL ¼
/L

/L�
; F L ¼

uLffiffiffiffiffiffi
/L

p ; e ¼ /R�
/L�
Then R1;2 can be rewritten in the non-dimensional form as follows:
r1;2 ¼
F L�ðeÞ �

ffiffiffiffiffi
cL

p
F L þ ð1� cLÞ

ffiffiffiffiffiffiffiffi
1þcL

2cL

q
; cL < 1

F L�ðeÞ �
ffiffiffiffiffi
cL

p
F L þ 2ð1� ffiffiffiffiffi

cL

p Þ; cL P 1

8<
: ð44Þ
where
F L�ðeÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
e
ð1� DhÞ2 � e2

1� e

s

The sign of the square root is defined by e according to Lemma 3.5. Now Eq. (42) in non-dimensional form
reads:
r1;2 ¼ 0 ð45Þ

which is a relation between e and cL. For each value of e Eq. (45) determines the value of cL providing infor-
mation about the left state of the Riemann problem.

Lemma 3.6. If F L� � F L P 0 and F L P �2 the solution of Eq. (45) exists, is unique and is contained inside the

interval 1 6 cL.

Proof. When 1 6 cL we obtain from (44): the following expression for cL:
cL ¼
F L� þ 2

F L þ 2

� �2

ð46Þ
If 1 6 cL holds then it can be shown that
F L� � F L

F L þ 2
P 0
The previous inequality is true for:
F L� � F L P 0

F L > �2

�
F L� � F L 6 0

F L < �2

�
�

Lemma 3.7. For cL < 1 and F L > �2 we have
or1;2

ocL
< 0 and the function r1;2 is monotone in cL in the same interval.

Proof. We need to study the sign of the derivative of r1;2 with respect to cL in the region cL < 1. The derivative
is given by
dr1;2

dcL

¼
�

ffiffiffi
2
p
ð1þ cL þ 2c2

LÞ � 2F Lc3=2
L

ffiffiffiffiffiffiffiffi
1þcL

cL

q
4c2

L

ffiffiffiffiffiffiffiffi
1þcL

cL

q

Since the denominator is always positive the sign of the derivative depends on the sign of the numerator only.
The numerator is negative if
� 1þ cL þ 2c2
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
Lð1þ cLÞ

p <
2F Lffiffiffi

2
p

The left-hand side is monotone for 0 < cL < 1 and attains its maximum at cL ¼ 1. Therefore, the following
inequality holds:
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� 1þ cL þ 2c2
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
Lð1þ cLÞ

p < � 4ffiffiffi
2
p <

2F Lffiffiffi
2
p

which gives �2 < F L. h

Lemma 3.8. Let F L� � F L < 0. Then if F L > �2 the solution of (45) exists, is unique and is contained inside the

interval 0 < cL < 1, whereas if F L < �2 the solution exists, is unique and is in the interval 1 6 cL.

The proof is omitted.
We know that for F L� � F L > 0 and F L < �2 no solution exists. This situation corresponds to the gener-

ation of a dry zone on the left side of the Riemann problem, so the solution must have a different structure. In
fact, if F L < �2 then from F 0 � F L > 0 it follows that a rarefaction fan connects the left side condition with
the right condition of the 1-Wave, but the velocity of the left fluid is larger than the maximum velocity the
rarefaction fan can connect.

A summary of the previous discussion is as follows: for physically meaningful data it is possible to uniquely
join a 1-Wave curve with a 2-Wave curve connecting the left initial data of the Riemann problem with the state
on the right side of the step.

3.3. 3-Wave family curve

The 3-Wave family curve corresponds to a 2-Wave family of the shallow water equations without a source
term; we choose to call it a ‘‘3-Wave” to avoid confusion in the final system solution. We now cross the wave
from right to left. For a given initial right state of the wave denoted by U 0 the velocity on the left of the wave is
given by [17]:
uR�ðU R;/R�Þ ¼ x3ðUR;/R�Þ
 






¼
uR þ 2

ffiffiffiffiffiffiffiffi
/R�

p
�

ffiffiffiffiffiffi
/R

p� 	
; /R� 6 /R

uR þ ð/R� � /RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð/R�þ/RÞ

2/R�/R

q
; /R� P /R

8<
: ð47Þ
As in Section 3.1, we now study the properties of the curve.

Lemma 3.9. x3ðUR;/R�Þ
 






is an increasing function of /R�.

The proof is similar to that of Lemma 3.1 and is thus omitted.
For a 3-Wave family curve, defined by (47), there exists a straightforward graphical interpretation of its

composition with a 2-Wave family curve: the point ðu;/Þ is the intersection between x3ðU R;/R�Þ
 






and
x2ðU L�;/R�Þ. If we define
R2;3ðU L�;U R;/R�Þ ¼ x3ðUR;/R�Þ
 






�x2ðU L�;/R�Þ

the condition of intersection is expressed by the following equation:
R2;3ðU L�;U R;/R�Þ ¼ 0 ð48Þ

Similar to the previous discussion, we define the following non-dimensional quantities:
cR ¼
/R

/L�
; F R ¼

uRffiffiffiffiffiffi
/R

p

Then the curves x2 and x3

 
can be expressed in non-dimensional form as follows:
r2;3 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2e
ð1�DhÞ2�e2

1�e

q
� ffiffiffiffiffi

cR

p
F R � ðe� cRÞ

ffiffiffiffiffiffiffiffi
eþcR

2ecR

q
; cR < e

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2e
ð1�DhÞ2�e2

1�e

q
� ffiffiffiffiffi

cR

p
F R � 2ð

ffiffi
e
p
� ffiffiffiffiffi

cR

p Þ; e 6 cR

8><
>: ð49Þ
Recalling (21) we again define:
ffiffi
e
p

F L�ðeÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2e
ð1� DhÞ2 � e2

1� e

s
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Then (48) takes the following form:
r2;3 ¼ 0 ð50Þ
Lemma 3.10. For F L� � F R 6 0 and F R 6 2 the solution of (50) exists, is unique and is contained in the interval

e 6 cR.

Proof. When e 6 cL from (49) we obtain the following expression for cR:
cR ¼ e
F L� � 2

F R � 2

� �2

ð51Þ
If e 6 cL holds then we have the following conditions
F L� � F R 6 0

F R 6 2

�
F L� � F R P 0

F R P 2

�
�

Lemma 3.11. For cR < e and F R < 2 we have
or2;3

ocR
> 0 and the function r2;3 is monotone in the same interval.

The proof is similar to that for the 1-Wave and is thus omitted.

Lemma 3.12. Let F L� � F R P 0. Then for F R < 2 the solution of (50) exists, is unique and is contained in the

interval 0 6 cR < e, whereas for F R > 2 the solution exists, is unique and is in the interval e 6 cR.

The proof is omitted.
We remark that for F L� �

ffiffi
e
p

F R 6 0 and F R > 2 no physically meaningful solution exists due to the same
reasons given in Section 3.2. The velocity on the right state generates a dry-bed condition because it is above
the maximum velocity the 3-wave fan can adjust to.

In conclusion, Lemmas 3.6, and 3.8, 3.10, and 3.12 demonstrate the way of constructing a path in the phase
plane connecting the left and right initial conditions.
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Fig. 10. Sketch of the critical curve in the phase plane.



Fig. 11. Flow chart of the solution procedure of the local Riemann Problem.
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3.4. Conditions on the wave patterns

The conclusions in the previous sections give arguments for the existence and uniqueness of the solution,
hence the possibility to draw a path in the phase plane connecting the representative point of the left state to
the one representing the right state of the Riemann problem. The resulting solution is bounded by some con-
ditions implicitly expressed by (21). These conditions are graphically represented in Fig. 10, where it is possible
to see that no point, representative of the state on the left of a stationary shock, can lie between the curves
CMAX and CMIN. This fact implies that some wave configurations cannot be allowed.

Lemma 3.13. A wave pattern in which a 1-Wave shock overcomes a 2-Wave is not possible.

Proof. If a 1-Wave overcome a 2-Wave the shock velocity has to be positive _s1 > 0 then and for the Lax inequal-
ities F L� > 1. The condition for F L� holds only for e > e3 and in this interval F < 1 then k1ðu;/Þ < 0. From the
Lax inequalities
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Fig. 12. Graphs of the total depth and mean velocity for the dam-breaking case.
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0 > k1ðu;/Þ > _s > k1ðuR;/RÞ ð52Þ

which contradict the initial assumption. h

Lemma 3.14. A wave pattern in which a 3-Wave shock overcomes, in the second quadrant, a 2-Wave is not pos-

sible for 0 6 e 6 e1.

Proof. If a 3-Wave curve is in the second quadrant we then have _s 6 0, meaning that
k3ðUL�Þ < _s < 0
This condition is compatible with the values of F < �1. In the interval of interest the value of F L� > �1 cor-
responds to F < �1, hence
0 < k3ðU L�Þ

which contradicts the assertion. h
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Fig. 13. Graphs of the total depth (a) and mean velocity (b) for the two rarefaction case.



3234 R. Bernetti et al. / Journal of Computational Physics 227 (2008) 3212–3243
Lemma 3.15. A rarefaction fan containing the stationary shock is not allowed.

Proof. If a rarefaction fan contains the t axis (the stationary shock) then the left state of the stationary shock

must have F L� ¼ 1, which is is not compatible with the function x2ð/L�;/R�Þ
 





h

According to the previous lemmas the only possible alternative allowable pattern is to have two subcritical
1-Wave and 3-Wave (wave in the second quadrant of the x� t plane) and a stationary shock, for e values
inside the interval 1 < e < esta;2. In fact in this case the subcritical motion started at the right side of the step
is extended to the left side as the graph of F 0 in Fig. 9 shows. There is a physical reason to support this: the step
acts as a reflecting mechanism on the signal incoming from the left and forcing the presence of a 1-Wave in the
second quadrant in the presence of supercritical motion too. On the other hand, when there is a subcritical
motion from the right of the step there is no reason for a reflection turning in the first quadrant the 3-Wave,
so it can extend to the second quadrant.
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3.5. Non existence conditions

From the analysis of the previous sections the unique solutions have a wave pattern consisting of three non
overlapping waves in the following order: 1-wave, 2-Wave and 3-Wave have a unique solution. The only
exception is when either of the following two conditions are satisfied
F L� � F L > 0; F L < �2
or
F L� � F R 6 0; F R > 2
The first condition is compatible neither with 1-Wave rarefaction, see (46) nor with a 1-Wave shock due to
energy considerations. The same reasoning is valid for the second condition, which is compatible neither with
a 3-Wave rarefaction, see (51), nor with a 3-Wave shock due to the energy dissipation condition.
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3.6. Solution algorithm

The solution of the problem is obtained by solving the derived non-linear system for internal states, either
in the dimensional form (42) and (48) or in the non-dimensional form (45) and (50). In our numerical exper-
iments the non dimensional form has been used throughout. Given a value for e the corresponding values of
cLand cR can be determined and then the complete solution can be built. A sample flow chart of the procedure
used to solve the local Riemann problem in the WAF numerical scheme can be found in Fig. 11

4. Examples

In this section we present some examples of possible solutions of the Riemann problem for system (1).
The results are presented in the form of plots of the total depth and mean velocity at time t ¼ 0 and time
t ¼ 1s. Recalling the considerations of Section 3.4 the examples are chosen to represent the possible combi-
nations of allowed wave patterns. We set the acceleration due to gravity equal to g ¼ 9:81. In all cases the
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bottom step is positioned at x ¼ 0 and has the height of 0.2 to the right of the origin, see the dashed line on
total depth plots.
4.1. Dam-break type problem

The dam-break case represents a combination of rarefaction and shock waves. The initial condition consists
of two columns of water of different heights and is as follows:
dL ¼ 1:461837; dR ¼ 0:308732; F L ¼ F R ¼ 0:0
The solution is presented in Fig. 12 and contains a left moving rarefaction wave, a stationary shock at the step
and a right-moving shock wave. The presence of the step leads to a reduction of the total water height running
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Fig. 17. Graph of the total depth and mean velocity for the negative supercritical motion case with two shock waves.
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to the right as compared to the flat bottom case. This reduction is due to the stationary shock, which dissipates
part of the energy of the shock wave.
4.2. Two rarefaction condition

In this case a divergent flow is simulated. The initial conditions are given by:
Fig. 18
solutio
dL ¼ 2:597020; F L ¼ �0:5

dR ¼ 4:62800; F R ¼ 1:5
The solution is shown in Fig. 13. As expected, it contains two rarefaction waves moving away from the central
stationary shock at the step. No significant difference is noted compared to the flat bottom solution due to the
. Lax–Friedrichs (symbols) versus exact (solid line) solutions of Problem 4.1. A mesh of 10,000 cells is used in the numerical
n.
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fact that the initial conditions do not induce any interaction between the travelling waves. Here the step has
only a dissipative effect.

4.3. Two shock case

In this case a convergent flow is studied. The following initial conditions are used:
Fig. 19
solutio
dL ¼ 0:568999; F L ¼ 0:9

dR ¼ 0:568999; F R ¼ 0:0
The solution is presented in Fig. 14. In this case the wave pattern is not different from that occurring in the
case of flat bottom. As was noted in the previous example, the step acts as an energy dissipation mechanism.
. Lax–Friedrichs (symbols) versus exact (solid line) solutions of Problem 4.2. A mesh of 10,000 cells is used in the numerical
n.
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4.4. Supercritical condition

In this case a supercritical motion (F L > 1) from the left is considered. The initial conditions are given by
Fig. 20
solutio
dL ¼ 0:50370; F L ¼ 1:5

dR ¼ 0:189824; F R ¼ 0:0
The solution is presented in Fig. 15. In this case there is a clear difference in the wave pattern with respect to
the flat bottom case: the presence of the step leads to the appearance of a left-moving shock wave. This is a
way in which the signal coming from the left is reflected by the step even if its Froude number suggests that
no signal can travel upstream. This could be due to a micro-mechanism by which a wave approaching the
shore is reflected and refracted in a numerical scheme that uses the present exact solution of the Riemann
problem.
. Lax–Friedrichs (symbols) versus exact (solid line) solutions of Problem 4.5. A mesh of 10,000 cells is used in the numerical
n.
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4.5. Negative supercritical motion

In this case a supercritical motion from right to left is considered. The initial conditions are given by:
Fig. 21
dL ¼ 0:75; F L ¼ �3:5

dR ¼ 1:1; F R ¼ �1:5
The solution is presented in Fig. 16. This is the other extreme case where the solution differs significantly from
the flat-bottom solution. The presence of the step introduces no limitation in the signal propagation down-
stream, and its effect is in dissipating energy by the stationary shock at the step. The other two waves prop-
agate without any constraints. If the left Froude number is reduced a two shock case is obtained. The
corresponding initial conditions are given by
. Numerical solution by the WAF method on the mesh of 2000 cells (symbols) versus the exact solution (solid line) for Problem 4.1.
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dL ¼ 0:75; F L ¼ �0:5

dR ¼ 1:1; F R ¼ �1:5
and the solution is shown in Fig. 17.
5. Comparison with numerical solutions

Here we show some comparisons of between the exact and numerical solutions. First we present an
independent verification of the fact that our exact solution to the Riemann problem is correct, noting that
we have introduced criteria to select a unique exact solution. We compare some of the exact solutions from
the previous section with the numerical results of the first-order (very dissipative) Lax–Friedrichs scheme
combined with a simple centred approximation for the source term.

Figs. 18–20 show the results of the numerical computations for a mesh of 10,000 cells for three different
solution patterns. We observe that overall the numerical solution agrees very well with our exact solution.
In particular, positions and types of all waves coincide. We note the (spurious) overshoots in the numerical
solution near the step position.

We next show some preliminary results of the practical application of present Riemann solver in the
framework of Godunov-type upwind methods. Here we use it in the WAF method [16–18,4,3], which
is a second-order TVD schemes. A detailed explanation of the implementation of the Riemann solver
in the framework of this method will be reported elsewhere. Fig. 21 shows the preliminary results of
the WAF method on a coarse mesh of 2000 cells. We again observe good overall agreement between
the numerical and exact solutions. The obvious improvement over the Lax–Friedrichs method is the
absence of overshoots in the total depth profile at the step position and a better resolution of all
waves.
6. Conclusions

The exact solution of the Riemann problem for the shallow water equations with a discontinuous step-like
bottom geometry has been presented. The solution is built by first adding to the conventional system of the
shallow water equations an additional equation for the bottom profile and then solving the new, extended sys-
tem. Conditions for existence and uniqueness of the solution have been found. Using the conservation of mass
and momentum, the Rankine–Hugoniot conditions for the stationary shock wave on the step have been
derived. These conditions satisfy the principle of dissipation of energy. This together with an additional con-
dition that a transition from subcritical to supercritical flow across the step is not allowed makes the solution
unique.

Examples of solutions have been presented for some typical configurations. These illustrate some of the
possible wave patterns which may occur in the Riemann problem solution. Next, the validity of the exact
solution constructed here has been verified against a first-order dissipative finite-difference method, noting
that good agreement is observed. Finally, we have used the proposed Riemann solver in a Godunov-type
scheme for the shallow water equations with variable bottom geometry. Preliminary results look
encouraging.

Future research will include the study of Riemann problems with vacuum in the initial data as well as a
systematic development of Godunov-type methods using the proposed Riemann solver.
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